7,732 research outputs found

    Optimal control theory based design of elasto-magnetic metamaterial

    Get PDF
    A method to design a new type of metamaterial is presented. A two-step strategy to define an optimal long-range force distribution embedded in an elastic support to control wave propagation is considered. The first step uses a linear quadratic regulator (LQR) to produce an optimal set of long-range interactions. In the second step, a least square passive approximation of the LQR optimal gains is determined. The paper investigates numerical solutions obtained by the previously described procedure. Finally, we discuss physical and engineering implications and practical use of the present study

    A new wavelength calibration for echelle spectrographs using Fabry-Perot etalons

    Full text link
    The study of Earth-mass extrasolar planets via the radial-velocity technique and the measurement of the potential cosmological variability of fundamental constants call for very-high-precision spectroscopy at the level of \updelta\lambda/\lambda<10^{-9}. Wavelength accuracy is obtained by providing two fundamental ingredients: 1) an absolute and information-rich wavelength source and 2) the ability of the spectrograph and its data reduction of transferring the reference scale (wavelengths) to a measurement scale (detector pixels) in a repeatable manner. The goal of this work is to improve the wavelength calibration accuracy of the HARPS spectrograph by combining the absolute spectral reference provided by the emission lines of a thorium-argon hollow-cathode lamp (HCL) with the spectrally rich and precise spectral information of a Fabry-P\'erot-based calibration source. On the basis of calibration frames acquired each night since the Fabry-P\'erot etalon was installed on HARPS in 2011, we construct a combined wavelength solution which fits simultaneously the thorium emission lines and the Fabry-P\'erot lines. The combined fit is anchored to the absolute thorium wavelengths, which provide the `zero-point' of the spectrograph, while the Fabry-P\'erot lines are used to improve the (spectrally) local precision. The obtained wavelength solution is verified for auto-consistency and tested against a solution obtained using the HARPS Laser-Frequency Comb (LFC). The combined thorium+Fabry-P\'erot wavelength solution shows significantly better performances compared to the thorium-only calibration. The presented techniques will therefore be used in the new HARPS and HARPS-N pipeline, and will be exported to the ESPRESSO spectrograph.Comment: 15 pages, 8 figure

    Local Hamiltonians for Maximally Multipartite Entangled States

    Full text link
    We study the conditions for obtaining maximally multipartite entangled states (MMES) as non-degenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMES as eigenstates.Comment: 6 pages, 3 figures, published versio

    Performing new identities: the community language of post-crisis Italian migrants in London

    Get PDF
    After the 2008 global crisis, Italy has experienced a relevant resumption of emigration. Tens of thousands of young Italians have chosen London as their favourite destination, giving rise to a new Italian community in the city. This article focuses on the transformation of migrants’ national identity and on a distinctive device of identity expression: language. Sample cases, extracted from a dataset collected for an original doctoral project, are used to explain how the insertion of English elements in speakers’ native language become the expression of the loss of pure national identity and of the renegotiation of transnational and migratory identities

    Deriving High-Precision Radial Velocities

    Full text link
    This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph's properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    MIDAS: Automated Approach to Design Microwave Integrated Inductors and Transformers on Silicon

    Get PDF
    The design of modern radiofrequency integrated circuits on silicon operating at microwave and millimeter-waves requires the integration of several spiral inductors and transformers that are not commonly available in the process design-kits of the technologies. In this work we present an auxiliary CAD tool for Microwave Inductor (and transformer) Design Automation on Silicon (MIDAS) that exploits commercial simulators and allows the implementation of an automatic design flow, including three-dimensional layout editing and electromagnetic simulations. In detail, MIDAS allows the designer to derive a preliminary sizing of the inductor (transformer) on the bases of the design entries (specifications). It draws the inductor (transformer) layers for the specific process design kit, including vias and underpasses, with or without patterned ground shield, and launches the electromagnetic simulations, achieving effective design automation with respect to the traditional design flow for RFICs. With the present software suite the complete design time is reduced significantly (typically 1 hour on a PC based on Intel® Pentium® Dual 1.80GHz CPU with 2-GB RAM). Afterwards both the device equivalent circuit and the layout are ready to be imported in the Cadence environment

    Precision multi-epoch astrometry with VLT cameras FORS1/2

    Full text link
    We investigate the astrometric performance of the FORS1 and FORS2 cameras of the VLT at long time scales with emphasis on systematic errors which normally prevent attainning a precision better than 1mas. The study is based on multi- epoch time series of observations of a single sky region imaged with a time spacing of 2-6 years at FORS1 and 1-5 months at FORS2. We performed a detailed analysis of a random error of positions that was shown to be dominated by the uncertainty of the star photocenter determination. The component of the random error corresponding to image motion was found to be caused primarily by optical aberrations and variations of atmospheric PSF size but not by the effect of atmospheric image motion. Comparison of observed and model annual/monthly epoch average positions yielded estimates of systematic errors for which temporal properties and distribution in the CCD plane are given. At frame center, the systematic component is about 25 mu-as. Systematic errors are shown to be caused mainly by a combined effect of the image asymmetry and seeing variations which therefore should be strongly limited to avoid generating random and systematic errors. For a series of 30 images, we demonstrated presicion of about 50 mu-as stable on daily, monthly, and annual time scales. Relative proper motion and trigonometric parallaxes of stars in the center of the test field were derived with a precision of 20 mu-as/yr and 40 mu-as for 17-19 mag stars.Comment: 16 pages, 16 figures, 4 tables, accepted in A&A; typos and language corrections; version sent to the printe

    Consequences of spectrograph illumination for the accuracy of radial-velocimetry

    Full text link
    For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.Comment: to appear in the Proceedings conference "New Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets", Shanghai, 200
    • …
    corecore